热点评!柯西不等式证明_柯西不等式
1、柯西不等式 二维形式 (a^2+b^2)(c^2+d^2)≥(ac+bd)^2 等号
2023-06-23
(资料图)
1、柯西不等式 二维形式 (a^2+b^2)(c^2 + d^2)≥(ac+bd)^2 等号成立条件:ad=bc 三角形式 √(a^2+b^2)+√(c^2+d^2)≥√[(a-c)^2+(b-d)^2] 等号成立条件:ad=bc 注:“√”表示平方根, 向量形式 |α||β|≥|α·β|,α=(a1,a2,…,an),β=(b1,b2,…,bn)(n∈N,n≥2) 等号成立条件:β为零向量,或α=λβ(λ∈R)。
2、 一般形式 (∑ai^2)(∑bi^2) ≥ (∑ai·bi)^2 等号成立条件:a1:b1=a2:b2=…=an:bn,或ai、bi均为零。
3、 上述不等式等同于图片中的不等式。
4、 推广形式 (x1+y1+…)(x2+y2+…)…(xn+yn…)≥[(Πx)^(1/m)+(Πy)^(1/m)+…]^m 注:“Πx”表示x1,x2,…,xn的乘积,其余同理。
5、此推广形式又称卡尔松不等式,其表述是:在m*n矩阵中,各行元素之和的几何平均 不小于各列元素之和的几何平均之积。
6、(应为之积的几何平均之和)。
本文分享完毕,希望对大家有所帮助。
关键词:
“非物质文化遗产进校园活动”展演活动在凤翔学校顺利开展
信阳市市文广旅局举办非物质文化遗产申报放权赋能培训会召开
淮南市第五批市级非物质文化遗产代表性项目公布
”陕西省非物质文化遗产研究基地“在榆林成立
定了!在郑州举办的2022中国非遗年会延期举办
喜讯!甘肃省古籍保护中心“古籍修复技艺”被列为省级非遗
从“非遗进校园”到“非遗在校园”!广东发布20个优秀案例